Sparse kronecker pascal measurement matrices for compressive imaging
نویسندگان
چکیده
Background: The construction of measurement matrix becomes a focus in compressed sensing (CS) theory. Although random matrices have been theoretically and practically shown to reconstruct signals, it is still necessary to study the more promising deterministic measurement matrix. Methods: In this paper, a new method to construct a simple and efficient deterministic measurement matrix, sparse kronecker pascal (SKP) measurement matrix, is proposed, which is based on the kronecker product and the pascal matrix. Results: Simulation results show that the reconstruction performance of the SKP measurement matrices is superior to that of the random Gaussian measurement matrices and random Bernoulli measurement matrices. Conclusions: The SKP measurement matrix can be applied to reconstruct high-dimensional signals such as natural images. And the reconstruction performance of the SKP measurement matrix with a proper pascal matrix outperforms the random measurement matrices.
منابع مشابه
Recovery of Sparse Matrices via Matrix Sketching
In this paper, we consider the problem of recovering an unknown sparse matrix X from the matrix sketch Y = AXB . The dimension of Y is less than that of X, and A and B are known matrices. This problem can be solved using standard compressive sensing (CS) theory after converting it to vector form using the Kronecker operation. In this case, the measurement matrix assumes a Kronecker product stru...
متن کاملThe research of Kronecker product-based measurement matrix of compressive sensing
The theory of compressive sensing is briefly introduced, and some construction methods for measurement matrix are deduced. A measurement matrix based on Kronecker product is devised, and it has been proved in mathematical proof. Numerical simulations on 2-D image verify that the proposed measurement matrix has better performance in storage space, construction time, and image reconstruction effe...
متن کاملSensing Matrix Design via Capacity Maximization for Block Compressive Sensing Applications
It is well established in the compressive sensing (CS) literature that sensing matrices whose elements are drawn from independent random distributions exhibit enhanced reconstruction capabilities. In many CS applications, such as electromagnetic imaging, practical limitations on the measurement system prevent one from generating sensing matrices in this fashion. Although one can usually randomi...
متن کاملHierarchical restricted isometry property for Kronecker product measurements
Hierarchically sparse signals and Kronecker product structured measurements arise naturally in a variety of applications. The simplest example of a hierarchical sparsity structure is two-level (s, σ)-hierarchical sparsity which features s-block-sparse signals with σ-sparse blocks. For a large class of algorithms recovery guarantees can be derived based on the restricted isometry property (RIP) ...
متن کاملHierarchical Recovery in Compressive Sensing
A combinatorial approach to compressive sensing based on a deterministic column replacement technique is proposed. Informally, it takes as input a pattern matrix and ingredient measurement matrices, and results in a larger measurement matrix by replacing elements of the pattern matrix with columns from the ingredient matrices. This hierarchical technique yields great flexibility in sparse signa...
متن کامل